
Water Management Effects on Rice yields, Rice Water Weevil UF IFAS **Infestation and Drainage Water Phosphorus Concentrations UNIVERSITY** of FLORIDA

Mohsen Tootoonchi (m.tootoonchi@ufl.edu), Timothy Lang, Jehangir Bhadha, and Samira Daroub Everglades Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Belle Glade, Florida

Introduction

- Soil loss due to oxidation of organic matter is a concern in the Everglades Agricultural Area in South Florida. Growing flooded rice can help mitigate losses by maintaining anaerobic conditions of flooded fields throughout the growing season (Schueneman & Snyder 2000).
- > Slowing down the oxidation process along with plant uptake can possibly alleviate phosphorus (P) enrichment of water in the EAA.
- Flooded rice production requires more water than other crops; for this reason, new techniques for conserving water and reducing pumping costs is valuable.
- > Rice water weevil, Lissorhoptrus oryzophilus Kuschel, is the most destructive insect pest of rice in the United States (Stout et al. 2002). However, there are water management practices such as "single midseason drawdown" and "shallow flood level" that can be helpful in controlling the infestation.

Results & Discussion Larval Density 15cm w/single drawdown 15cm continuous flood 5cm w/single drawdown 5cm continuous flood ar **Days After Planting** Figure 9. a) Number of Larvae per core, from each treatment for 3 sampling times during the growing season.

Table 2. ANOVA for Larval Density, Treatment, Date.

Source	DF	Type I	Mean	F Value	Pr > F			
Treatment	3	81.9	27.3	3.87	0.0126			
Date	2	89.6	44.8	6.36	0.0029			
Treat*Date	6	48.6	8.1	1.15	0.3428			
Rice water significantly h			-	15 cm f	lood was			
5cm Continuo	us Flood Cheni	ere		·				
15cm Continue	ous Flood Chen	iere		H	-			
	us Flood Tagga							
15cm Continue	ous Flood Tagg	art	·					
5cm Single Dra	awdown Cheni	ere						
15cm Single D	rawdown Chen	iere	F					
5cm Single Dra	awdown Tagga	rt						
15cm Single D	rawdown Tagg	art						
0.0 1.0	2.0	3.0	4.0	5.0	6.0			
Grain Yield (Mg ha ⁻¹) Figure 7. Rice grain yield from each treatment.								

Different water managements can also affect nutrient availability and drainage water quality, as well as rice grain yields.

Figure 1. a) Soil Subsidence and b) aquatic vegetation in canals.

Objectives

To test the hypotheses that lowering the water table and introducing a midseason drawdown will:

- **Reduce irrigation pumping costs**
- **Reduce rice water weevil infestation**
- Figure 5. a) Total Phosphorus (TP), b) Soluble Reactive Phosphorus (SRP), and c) Particulate Phosphorus (PP) concentrations from inflows and outflows for 6 sampling times during the growing season.
- Phosphorus concentration reduction was highest in 15 cm. continuous flood at 58% and lowest in 5 cm midseason

Highest grain yields were observed in "15 cm Continuous Flood" (5.1 Mg ha⁻¹) and "5 cm Midseason Drawdown" (5.0 Mg ha⁻¹) but they were not significantly different.

Single midseason drawdown was practiced for half of the field (1.2 ha) and in 11 days, total of 444800 m³ of inflow water was conserved.

Conclusions

- **Increase rice crop N and P uptake**
- **Increase rice grain yield**
- Improve on-farm water quality

Methodology

- A strip-plot experiment was designed with four water level treatments and four replications (Fig.3).
- Treatments were: 15 cm midseason drawdown, 5 cm midseason drawdown, 15 cm continuous flood, 5 cm continuous flood.
- In each subplot two predominant EAA rice cultivars were planted: Cheniere and Taggart.
- Preparation methods: Disc tillage followed by dry-seeding in 20 cm rows.

ious Flood

		N	1idseason Drawdowr	North	Continu
Action	Days After Planting		Taggart		
Flooding	21	1	Cheniere		С
		2	Taggart	15	
Plant Sampling	56	2	Cheniere	15 cm	C
	50	3	Taggart	Flood	-
Water Sampling	35,49,60,72,84,98	э	Cheniere		С
			Taggart		-
RWW Sampling	58,79,85	4	Cheniere		c
	, ,	5	Taggart		-
Drawdown	60	5	Cheniere		C
		6	Taggart	Γ	-
Reflood	71	0	Cheniere	5 cm	C
		7	Taggart	Flood	-
Flag Leaf Sampling	78	/	Cheniere		C
		8	Taggart		-
Harvest	109	0	Cheniere		C
				South	

Figure 2. Project timeline.

drawdown, with an overall reduction of 46% on average.

Table 1. Percent reduction of TP, TDP, SRP and PP in drainage waters by treatment.

%Reduction	ТР	TDP	SRP	PP
15cm Midseason Drawdown	40.5	38.1	51.1	50.2
5cm Midseason Drawdown	39.4	56.3	47.7	31.4
15cm Continuous Flood	58.2	67.0	53.4	56.1
5cm Continuous Flood	47.5	52.2	40.8	31.6

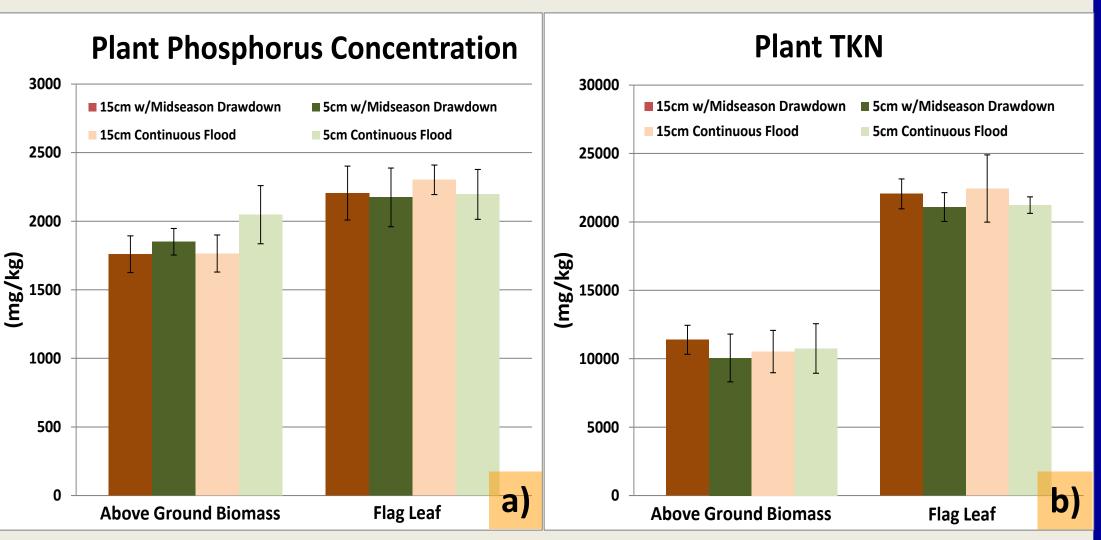


Figure 6. a) Phosphorus concentration and b) Total Kjeldahl Nitrogen (TKN) in above ground biomass and flag leaf samples.

At 56 days after planting, Cheniere cultivar N and P uptake was

- Total phosphorus concentration in rice drainage water can be reduced through rice plant and associated aquatic vegetation uptake.
- Shallow flood water level appears to be an effective cultural method for controlling rice water weevil infestation.
- Midseason drawdown has the potential to reduce the costs of pumping and conserve 3600 m³ ha⁻¹ of water per day.
- Grain yields were almost the same in all different treatments; Cheniere cultivar had a better grain yield in each flood level.
- Drawdown did not show any significant effect on nutrient uptake by plants but also did not reduce the grain yield.
- Total phosphorus reduction in drainage water was slightly higher in the 15 cm flood than the 5 cm flood.

Ongoing Related Research

- Assessment of the total N and P total uptake by submerged aquatic vegetation and rice crop in the differing water depths and drawdown treatments.
- Gaseous fluxes from a rice field under different flood levels and conditions
- Weed incidence and yield effects on rice with the different flood levels.
- Rice ration crop as a cash/cover crop in the Everglades Agricultural Area

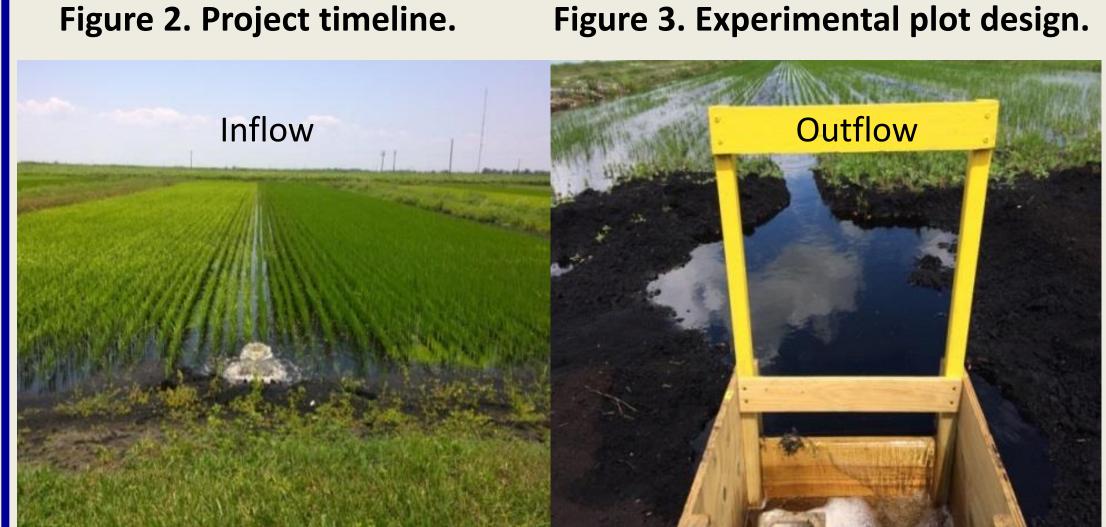


Figure 4. Early season inflow and outflow water structures.

Figure 8. Rice Water Weevil Larvae and its feeding effect on rice root.

Acknowledgement

This project was funded by EAA Rice Council, a special organization composed of rice growers from within the EAA Basin. The council was created for the purpose of funding research to improve the economics, production, and sustainability of rice in the EAA.

References

T. J. Schueneman & G. H. Snyder. 2000. Water-Use Considerations for Florida-Grown Rice. SS-AGR-87. Agronomy Department, Florida Cooperative Extension Service, Institute of Food and Agricultural. M. J. Stout et al. 2002. Flooding Influences Ovipositional and Feeding Behavior of the Rice Water Weevil (Coleoptera: Curculionidae). J. Econ. Entomol. 95(4): 715-

721 Entomological Society of America.